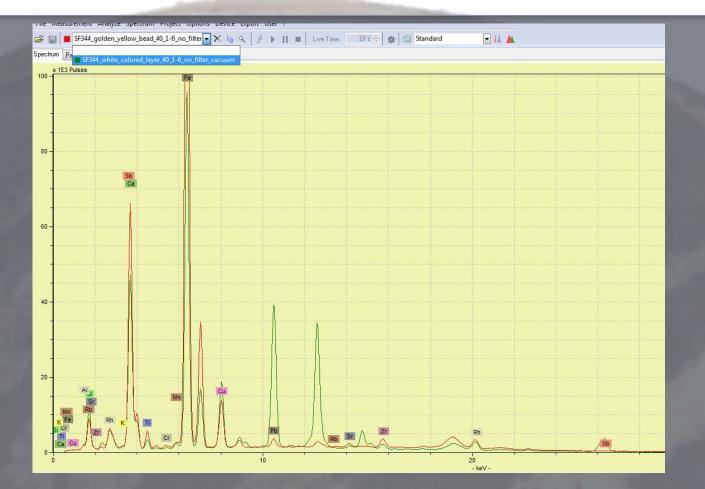

Vanessa Muros Conservator, UCLA/Getty Program

SAA Annual Meeting, April 6, 2013



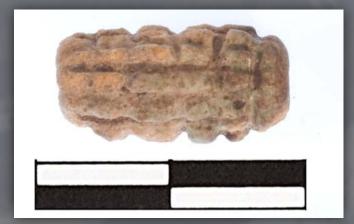
- 100 graves
 - some with multiple burials
 - 150 individuals
- Burials date from
 14th c. -6th c. BC.
 - Most 9th-early 8th c. BC.
 - Tumulus reused in 19th c. AD

- Factors influencing analytical methodology:
 - Elements present unknown
 - Heterogeneity of matrix
 - Deterioration/condition
 - Limitations of the instrument-no Na
 - Size of beads
 - Spot size of instrument (≈5mm)
 - Surface geometrycurved



SF339

SF295



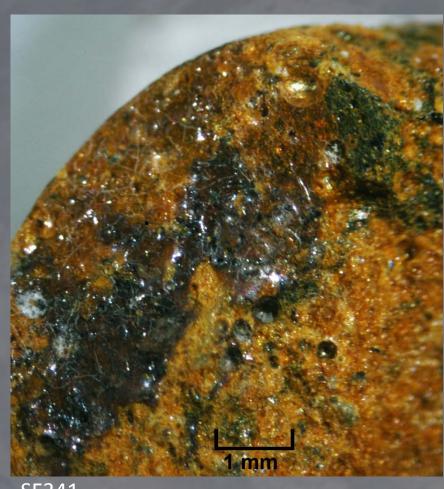
- Bruker Tracer III-V pXRF excitation conditions:
 - no filter, 40 kV, 1.6 μA, vacuum, 180 seconds
 - Ti-Al filter, 40 kV, 1.6 μA, 180 seconds
 - Cu filter, 15 kV, 15 μA, vacuum, 180 seconds
- Spectrum overlay used to compare areas because of heterogeneity/decoration

Faience bead

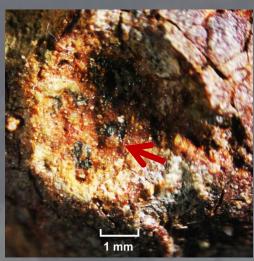
- Blue-green glaze over a quartz core
- Barrel bead with a raised grid pattern
- Glaze contains Cu, Pb and Sn
 - possible reuse of bronze scrap as copper/color source?

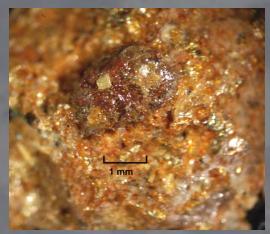
Glass Beads

- Similar elements found regardless of color (blue-green, white, yellow, amber, dark green)
 - Contained Al, Si, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Pb, Sr, Zr
 - K is from alkali flux-plant ash
 - mixed alkali with Na and K, used in this time period
 - Fe colorant for most beads, and Cu for a blue bead (top left)

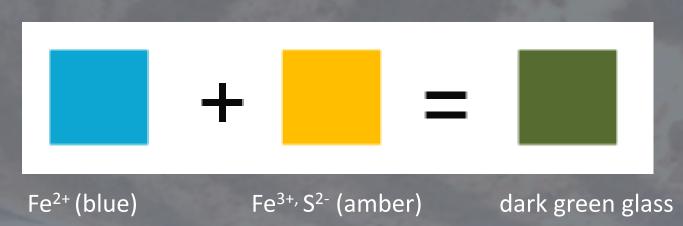


Glass Beads


- Differences noted in beads with white decoration
 - More intense Pb peak
 - Presence of Sb
 - Both used to make opaque white glass as lead oxide or calcium antimonate
- Verified presence of Sb in white using XRD
 - Calcium antimonate (CaSb₂O₆, Ca₂SbO₇)
 - Antimony oxide (Sb₆O₁₃)


Black or brown alteration/staining on glass

SF341


SF294

SF342

Ferri-sulfide compounds

- Dark green glass can be formed by:
 - Presence of Fe²⁺ and Fe³⁺
 - Presence of a ferri-sulfide complex (Fe^{3+,} S²⁻)
 - Combines with Fe²⁺ to make olive green, dark olive amber, amber glass
 - Occurs under strong reducing conditions
 - Only small amount of S needed-could be introduced in alkali

- Tend to see this alteration on glass with K as alkali
- Alkali leaches out Sirich layer with Fe from original glass
 - gives it an orange or brown color
- These glasses have thicker weathering crusts and break into chunks

SF341

嶾

Beginning of the orange-brown alteration?

SF339 SF283

- What were the original colorants of the glass?
- What elements were present in the corrosion layers?
- What role do the colorants and raw materials play in the alteration or level of deterioration observed?
- What role does the burial environment play in the alteration and deterioration of these beads?

- Why is there such a
 - o why is there such a difference in the condition of beads excavated from the same grave?
 - How does the alteration/ deterioration affect the long term preservation of the beads?

Beads from Grave 77 (12-11th c. BC)

Acknowledgements

- Lofkënd Archaeological Project
- Institute of Archaeology, Tirana
- UCLA/GettyConservation Program
- Dr. Robert Brill
- Dr. David Scott
- Dr. Ioanna Kakoulli
- And all of you for your attention!

